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Computational Fluid Dynamics (CFD)

• Governing equations and general-purpose CFD 
codes (PHOENICS, FLUENT, CFX, etc.)

• Advanced CFD sub-models for gasification R&D 
• Multiphase CFD capabilities at U of T and ACFDA
• Recent R&D Projects: GRAD CFD, GLASS and 

COFFUS related studies
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Introduction: gasification R&D and multiphase CFD

• Solid/liquid fuel gasification and combustion in a 
furnace:
– Multi-physics: multiphase flow, turbulence, phase change, 

homogeneous and heterogeneous combustion, radiation 
– Multi-scale: small particles and large furnace dimensions 
– Expensive experimentation for optimal furnace design
– Need for CFD predictions (faster and cost-effective design)

• Multiphase CFD capabilities:
– Commercial general-purpose CFD codes (PHOENICS, 

FLUENT, CFX, etc.) - framework for CFD analyses 
– Advanced customized CFD sub-models for gasification R&D
– CFD predictions as scientific basis for optimal furnace 

design 
– Cost-effective and reliable design tool (effect of furnace 

geometry and input conditions)
– Safety and environmental analyses



Governing equations and general-purpose CFD codes

• Various commercially available CFD software packages 
(PHOENICS,  FLUENT, CFX, etc.) are equipped with multiphase 
flow capabilities

• Governing equations include:
– conservation equations for mass, momentum and energy for each 

phase,
– constitutive equations (linkage between phases)
– turbulence model equations,
– chemical kinetics (homogeneous and heterogeneous reactions)
– equations for radiative heat transfer

• Need for advanced customized models for gasification R&D
– Develop new sub-models for more accurate predictions
– Validate models using experimental data
– Apply models as cost-effective, rapid design tool



Multiphase CFD capabilities at U of T and ACFDA

• Multiphase CFD research group at U of T works on CFD 
analyses of complex industrial multiphase flow processes 
(chemical, energy, environmental, petroleum, etc.) including

– Advanced cutting-edge CFD model development
– Model validation (experimental fluid dynamics)
– Model customization and application to challenging real-life problems 

• Research team consists of CFD experts with 25+ years of 
experience in CFD R&D (both academic and industrial)

• Products and services:
– Advanced customized multiphase CFD software modules for real-life 

industrial applications (gasification R&D, safety, design)
– CFD consulting services
– CFD training and support

• Approach:
– Provide complete set of model development, validation and 

customization



Recent R&D projects: GLASS, GRAD CFD and COFFUS 
related modules

• Advanced CFD models (developed over the last 7 years):
– GLASS, Gas-Liquid flow Analysis and Simulation Software, for 

analyses of complex gas-liquid flows and heat/mass transfer in 
complicated geometries (no limitations on flow regime):

http://www3.sympatico.ca/acfda/Docs/ASME2006-98355.pdf
– GRAD CFD module, for advanced CFD modeling of Gas Release 

and Dispersion (safety and environmental):
http://www3.sympatico.ca/acfda/Docs/Paper_NATO_2006_Final.pdf
– Advanced CFD modeling of coal/wood/biomass gasification and 

combustion (extensions of COFFUS in PHOENICS):
http://www.simuserve.com/cfd-shop/uslibr/reactive/fur-sing.htm
http://www.cham.co.uk/phoenics/d_polis/d_applic/d_comb/coalgas/coalgas.htm
http://www.cham.co.uk/website/new/mica/coffus.htm

http://www3.sympatico.ca/acfda/Docs/ASME2006-98355.pdf
http://www3.sympatico.ca/acfda/Docs/Paper_NATO_2006_Final.pdf
http://www.simuserve.com/cfd-shop/uslibr/reactive/fur-sing.htm
http://ww.cham.co.uk/phoenics/d_polis/d_applic/d_comb/coalgas/coalgas.htm


GLASS case study: CFD model development for 
gas-liquid flows in water electrolysis systems

• Water electrolysis systems are used to produce hydrogen from 
water 

• Computational fluid dynamics (CFD) is applied as a design tool 
to predict gas-liquid flows and heat/mass transfer in water 
electrolysis systems 

• CFD models can predict:
– 3D distributions of gas and liquid phases, their velocities, 

temperatures and pressure throughout entire system
– Gas-liquid separation efficiency
– Hydrogen gas purity
– Electrolyte circulation rate
– Heat and mass transfer rates

• CFD sensitivity runs allow for determination and optimization of
critical design parameters

• Optimized cell stack design can be achieved rapidly and 
economically



GLASS case study: governing equations
Mass and momentum conservation equations of Inter-Phase Slip 
Algorithm (IPSA), option in commercial PHOENICS CFD software:
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The bubble size, db, is an important parameter that affects the overall liquid flow rate



GLASS case study: advanced CFD model capabilities

• Limitations of general-purpose CFD codes: constant bubble size, 
given liquid flow rate, high Reynolds turbulence, convergence issues

• No commercial CFD code is capable of modeling the whole 
electrolyzer (stack, separator, piping)- different flow regimes

• Advanced sub-models developed for PHOENICS: Gas-Liquid flow 
Analysis and Simulation Software (GLASS)
– Two-phase turbulence

• Effect of bubbles at low Reynolds numbers
– Variable bubble size

• Dependent on two-phase flow regimes
– Phase inversion

• Mostly liquid to mostly gas
– Heat and mass transfer
– Convergence promotion methods

• Reduce computational requirements



GLASS case study: CFD geometry input



GLASS case study: CFD modeling results and 
validation

• Operating conditions
– 10 bar, 70°C and 4.0 kA/m2

– Natural circulation with different flow 
regimes (from bubbly to separated)

• Output
– 3D distributions of pressure, gas & 

liquid velocity components and gas 
& liquid volume fractions within 
computational domain

– Total gas and liquid flow rates at the 
outlets

• Effects of current density and 
pressure on electrolyte flow rate 
and hydrogen volume fraction 
matched well with experimental 
data

– CFD predictions and electrolyte flow 
measurements were within 6% at 
standard operating conditions Hydrogen volume fraction, R2, in commercial 

electrolysis system under standard operating 
conditions.



GLASS validation

• GLASS is a validated CFD modeling tool for cell stack and peripherals 
design: 
– Validated for the entire real-life water electrolysis system (84-cell 

stack) at moderate and high pressures through physical 
experimentation

– Predicting accurately electrolyte flow in the whole system (stack, 
piping, separator)

– Predicting accurately cooling requirements in the whole system

• Quantitatively accurate: disagreements between the CFD predictions 
and electrolyte flow measurements were within 6% at a pressure of 5 
bar and current densities up to  4 kA/m2

• Qualitatively correct: predicted effects of current density and 
pressure on electrolyte flow rate and hydrogen volume fraction 
matched well experimental data



GLASS case study: summary

• Advanced CFD models of gas-liquid flows in complex 
systems have been developed, validated and are being used 
to simulate two-phase flows in alkaline water electrolysers

• Unique modeling capabilities enable comprehensive system 
design:
– Gas-liquid flow predictions for all flow regimes
– Heat & mass transfer predictions for the whole system
– Design capability for modules with multiple cell stacks 

(distributed resistance method)
• Benefits include:

– Rapid design optimization capability
– Reduced development time, risk and cost



GRAD CFD module: prediction of flammable gas cloudsGRAD CFD module: prediction of flammable gas clouds

Modeling of various flammable GRAD scenarios is based on general
transient 3D conservation equations (gas convection, diffusion and 
buoyancy) with proper initial and boundary conditions

– 1) transient behavior of all calculated variables (pressure, gas density, 
velocity and flammable gas concentration)

– 2) movement of flammable gas clouds with time
– 3) safety evaluation by analyzing a flammable gas concentration iso-

surface (lower flammability level (LFL)) and total volumes of flammable gas

• Three major stages in GRAD modeling: 
– 1) steady-state before-the-release simulations
– 2) transient during-the-release simulations
– 3) transient after-the-release simulations 

• CFD framework: PHOENICS general-purpose CFD software
– Commonly used and well validated (more than 20 years)
– Friendly interface for incorporating GRAD sub-models
– Various turbulence models: LVEL, MFM and k-ε variants 



GRAD CFD module: governing equationsGRAD CFD module: governing equations
• 3D momentum equations

• Continuity equation

• Flammable gas mass conservation equation

• Gas mixture density based on flammable gas mass 
concentration, C, or flammable gas volumetric concentration, α

• Effective viscosity and diffusivity
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Advanced GRAD CFD model featuresAdvanced GRAD CFD model features

• Dynamic Boundary Conditions at Release Orifice:

• Real Gas Law Properties:

• Turbulence Model Settings:
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– Transient choked mass flow rate

– Initial choked mass flow rate

– Abel-Noble Equation of State for hydrogen
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– NIST data for methane, propane …

– LVEL model, k-ε model, k-ε RNG model, k-ε MMK model and MFM
• Local Adaptive Grid Refinement (LAGR)

– Iterative technique, accurate capture of flammable cloud behaviors 
near the release location and large gradient regions
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Validation, calibration and enhancement of GRAD CFD module 
capabilities for simulation of HYDROGEN releases and dispersion using 
available experimental databases

ConditionsCase
No. 

Validation Case 
Name Domain Leak Type Process Available Data

1 Helium jet Vertical Steady

Velocity, 
concentration,

turbulence 
intensity

2 H2 jet Transient Concentration

3 INERIS jet Steady Concentration

4 Hallway end Transient Concentration

5 Hallway middle Transient Concentration

6 Garage Transient Concentration

7 H2 vessel Enclosed Transient Concentration

Semi-
enclosed Vertical

Horizontal

Open

GRAD CFD module validation matrixGRAD CFD module validation matrix



GRAD CFD module validation:GRAD CFD module validation:
HYDROGEN SUBSONIC RELASE IN A HALLWAYHYDROGEN SUBSONIC RELASE IN A HALLWAY

• Concentrations at four sensors for 20 min. 
duration

– Domain: 2.9 m × 0.74 m ×1.22 m
– Grid size: 36 × 10 × 18
– H2 leak rate: 2 SCFM (0.944 m3/s) 
– Duration: 20 min
– Concentration: 3 % iso-surface

 

D o o r  
v e n t

H y d ro g e n  
in le t  

R o o f  
v e n t 

Published results

 

Sensor 1

Sensor 2

Sensor 3

Sensor 4

Our results



GRAD CFD module validation:GRAD CFD module validation:
HYDROGEN & HELIUM SUBSONIC RELEASE IN A GARAGE WITH A CARHYDROGEN & HELIUM SUBSONIC RELEASE IN A GARAGE WITH A CAR

Garage size: 6.4 m x 3.7 m x 2.8 m

Leak size: 0.1 m x 0.2 m

Two vents: porous material

Car size: 4.88 m x 1.63 m x 1.35 m

Leak rate: 7200 L/hour

Leak direction: downwards

Leak location: bottom of the car

Helium release simulated by using LAGR (local adaptive grid refinement)

Simulations Sensor 1 Sensor 2 Sensor 3 Sensor 4

Swain’s  CFD results 0.5% 2.55% 2.55% 1.0%

Initial coarse grid, 32×16×16 1.92% 2.53% 2.52% 1.94%

Adaptive refined, 39×26×24  0.98% 2.66% 2.62% 1.08%

Adaptive refined, 58×26×27  0.79% 2.70% 2.67% 1.01%



GRAD CFD module applications:GRAD CFD module applications:
RELEASE IN A HYDROGEN GENERATOR ROOMRELEASE IN A HYDROGEN GENERATOR ROOM

 

• Existence of louver and exhaust fan in the 
Generator Room creates a steady-state 
airflow with 3D fluid flow pattern

Before-the-Release Simulation

Ventilation velocities before release

During-the-Release Simulation

50% LFL 100% LFL

End of 10-min
release from
the vent line



• Advanced GRAD CFD models are developed, validated and applied 
for various industrial real-life indoor and outdoor releases of 
flammable gases (hydrogen, methane, propane, etc.)

• Advanced modeling features:
– Real-life scenarios with complex geometries
– Dynamic release boundary conditions, 
– Calibrated outlet boundary conditions
– Advanced turbulence models
– Real gas law properties applied at high-pressure releases
– Special output features 
– Adaptive computational grid refinement tools

• Dynamic behaviors of clouds of  flammable gas or pollutant could
be accurately predicted 

• Recommended for safety and environmental protection analyses 
• Recommended for design optimizations of combustion devices

GRAD CFD module: summaryGRAD CFD module: summary



• PHOENICS CFD software has built-in coal gasification and 
combustion module, COFFUS, capable of modeling coal-fired 
furnaces (www.cham.co.uk/website/new/mica/coffus.htm)

• COFFUS features:
– Real-life complex geometries of furnaces
– Customized inlet boundary conditions (coal composition, coal and

gas flow rates, swirl velocities, etc.)
– Two-phase flow modeling via Eulerian-Eulerian interpenetrating 

continua with different phase velocities and temperatures and 
monodispersed approximation (IPSA)

– Turbulence modeling by k-e model or effective viscosity model 
– Radiation modeling via 6-flux model 
– Devolatilisation and formation of char (solid carbon, ash) modeling 

by kinetically controlled reaction
– Char combustion modeling by diffusion controlled heterogeneous 

reactions (reaction rates inversely proportional to char-particle size)
– Combustion of volatiles is modeled by EBU model or blended model
– Output: 3-D distributions of phase velocities, temperatures, species 

concentrations and radiation fluxes 
• Recommended for design optimizations of coal-fired furnaces

Models of coal gasification and combustion built in Models of coal gasification and combustion built in 
PHOENICS (COFFUS, etc.)PHOENICS (COFFUS, etc.)

http://www.cham.co.uk/website/new/mica/coffus.htm


COFFUS modeling resultsCOFFUS modeling results



• List of some models developed for PHOENICS by Dr. Sergei Zhubrin:
• “Combustion in a Moving Coal Bed” (2002): 

www.cham.co.uk/phoenics/d_polis/d_applic/d_comb/movinbed/movinbed.ht
m

• “Modelling of Coal Gasification” (2002):
www.cham.co.uk/phoenics/d_polis/d_applic/d_comb/coalgas/coalgas.htm

• “Fuel-Dust Flames in a Furnace” (2002): 
www.simuserve.com/cfd-shop/uslibr/reactive/fur-sing.htm

• “Multi-Fluid Model for Two-step Reaction of Combustion” (2001): 
• http://www.simuserve.com/mfm/mfm-cva/two-step/two-step.htm
• “Multi-Fluid Model applied to the combustion of volatiles emerging from

solid fuel” (2001): www.simuserve.com/mfm/volatili/volatili.htm
• “Combustion and Nitric Oxide Formation in a Burner” (2001): 

www.simuserve.com/mfm/mfm-cva/two-step/two-sing.htm

• “Coal-Fired Utility Boiler” (2000):
/www.cham.co.uk/phoenics/d_polis/d_lecs/coal/u-boiler/index.htm

Advanced models of coal gasification and combustion Advanced models of coal gasification and combustion 

http://www.cham.co.uk/phoenics/d_polis/d_applic/d_comb/movinbed/movinbed.htm
http://www.cham.co.uk/phoenics/d_polis/d_applic/d_comb/movinbed/movinbed.htm
http://www.cham.co.uk/phoenics/d_polis/d_applic/d_comb/coalgas/coalgas.htm
http://www.simuserve.com/cfd-shop/uslibr/reactive/fur-sing.htm
http://www.simuserve.com/mfm/volatili/volatili.htm
http://www.simuserve.com/mfm/mfm-cva/two-step/two-sing.htm
http://www.cham.co.uk/phoenics/d_polis/d_lecs/coal/u-boiler/index.htm


• Detailed description of coal gasification model:
www.cham.co.uk/phoenics/d_polis/d_applic/d_comb/coalgas/coalgas.htm
Some model features:
– Non-equilibrium two-phase flow of combustible particles dispersed in 

carrying air stream is modeled via use of  two interpenetrating continua 
with the transfer of heat, mass and momentum between them 

– Devolatilisation of dispersed phase is kinetically driven
– Turbulent combustion of volatiles is modeled via two-step reaction of 

hydrocarbon oxidation, in which carbon monoxide is an intermediate 
product

– Char combustion is represented by blended mechanism of oxygen 
diffusion to the particle and chemical kinetic

– NOx formation is represented by simplified sub-models, such as 
oxidation of nitrogen present in the combustion air and that contained in 
the fuel

– Turbulence is accounted for by conventional K-e model
– Radiation is modeled via composite-radiosity model modified to account 

for radiating particles and gases together
– Model is applied to pulverized coal combustion in a wall-fired furnace

Advanced models of coal gasification and combustion  Advanced models of coal gasification and combustion  
-- continuedcontinued

http://www.cham.co.uk/phoenics/d_polis/d_applic/d_comb/coalgas/coalgas.htm


• Some features of model developed by Dr. Sergei Zhubrin:
– Model of reactive gas flow through the packed bed of wet 

wooden chips of given composition and size in the real-life over-
fed raw-wood-firing furnace of continuous charge type 

– Model uses the Eulerian description of gaseous flow through the 
porous lump structure with the transfer of heat, mass and 
momentum between gas and solid phases

– Fresh lumps of wood are supposed to be fed from over the 
steady burning bed, which is supported by a grate composed of a 
number of interlocked bars

– Primary and over-fire air for combustion enters from outside 
beneath the grate and through the furnace walls above the bed

– Gaseous combustion products are discharged through the top 
opening

Advanced model of wood/biomass gasification and Advanced model of wood/biomass gasification and 
combustioncombustion



• Some model features (continued):

– Model predicts the 3-D distributions of velocities, temperatures 
and product mixture composition in a furnace

– Model accounts for drying of wet lumps, devolatilisation of wood, 
char combustion and gaseous combustion

– Devolatilisation is diffusion-kinetically driven
– Turbulent combustion of volatiles is modeled via two-step 

reaction of hydrocarbon oxidation, in which carbon monoxide is 
an intermediate product

– Char combustion is represented by blended mechanism of 
oxygen diffusion to the particle and chemical kinetic

– Radiation is modeled via composite-radiosity model modified to 
account for radiating particles and gases together

Advanced model of wood/biomass gasification and Advanced model of wood/biomass gasification and 
combustion combustion -- continuedcontinued



Advanced model of wood/biomass gasification Advanced model of wood/biomass gasification 
and combustion and combustion -- continuedcontinued



Summary
• Multiphase CFD research group at U of T and ACFDA is capable of 

developing, validating and applying the most advanced customized CFD 
models for various gasification R&D projects

• Potential applications of expertise:
– Development of advanced customized multiphase CFD software modules for 

real-life industrial applications 
– Model validation 
– Model customization for a particular application
– Model applications to analyses of complex multiphase flows (gasifier, 

furnace, separator, pollutant dispersion, safety, etc.) 
• Research team consists of CFD experts with 25+ years of experience in 

CFD R&D (both academic and industrial)
• Products and services:

– Advanced customized multiphase CFD software modules for real-life 
industrial applications (gasification R&D, safety, design)

– CFD consulting services
– CFD training and support

• Approach:
– Provide complete set of model development, validation and customization
– Provide pragmatic and accurate solutions to challenging multiphase problems
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Thank you!
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